В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что ВFDЕ — параллелограмм.
Доказательство:
∆ ABE=∆CDF (треугольники прямоугольные ABE и CDFравны, так как гипотенузы AB = CD и острые углы, угол BAE и угол DCF равны)
Следовательно:
BE = DF
BE || DF, (BE паралельны DF, так как являются перпендикулярыами к одной прямой)
∆ BEF=∆DFE (BE = DF доказано выше и EF — общая сторона, угол DFE и угол BEF равны 90 градусов)
Следовательно:
BF = DE и BF || DE, (перпендикуляры к одной прямой)
Доказано:
Четырёхугольник BFDE — параллелограмм, (противолежащие стороны равны и параллельны.)
Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
Реклама