Как решить простейшее модульное уравнение или уравнение содержащее модуль?
Обычно решение сводится к системе :
Сразу рассмотрим на примере решение уравнений.
Пример №1:
Решите уравнение | x – 6| = 18.
Решение:
Выражение стоящее под модулем приравниваем к 0:
x-6=0
x=6
Отмечаем 6 на координатной прямой, далее проверяем знак на каждом из получившихся интервалах.
На интервале (-∞; 6) возьмем число 0 и подставим
0-6=-6 получилось отрицательное число, значит на этом интервале будет знак “ – ”
На интервале (6;+∞) возьмем число 7 и подставим
7-6=1 получилось положительное число, значит на этом интервале будет знак “ + ”
Теперь решаем уравнения на каждом интервале.
(-∞; 6) здесь получился знак “ – ”, значит выражение под модулем поменяет знаки на противоположные:
-x+6=18
x=-12
Видно, что -12 лежит на интервале (-∞; 6) следовательно, является корнем уравнения.
(6;+∞) здесь получился знак “ + ”, значит выражение под модулем остается без изменения:
x-6=18
x=24
Видно, что 24 лежит на интервале (6;+∞) следовательно, является корнем уравнения.
Ответ: -12 и 24
Пример №2:
Решите уравнение | 2x – 5 |- | 4 — x | = -18.
Решение:
Выражения стоящие под модулем приравниваем к 0:
2x – 5 = 0 и 4 — x = 0
x=2,5 и x=4
Отмечаем x=2,5 и x=4 на координатной прямой, далее проверяем знак на каждом из получившихся интервалах.
На интервале (-∞; 2,5) возьмем число 0 и подставим в каждое выражение
2*0-5=-5 получилось отрицательное число, значит на этом интервале будет знак “ – ”
4-0=4 получилось положительное число, значит на этом интервале будет знак “ + ”
На интервале (2,5; 4) возьмем число 3 и подставим в каждое выражение
2*3-5=1 получилось положительное число, значит на этом интервале будет знак “ + ”
4-3=1 получилось положительное число, значит на этом интервале будет знак “ + ”
На интервале (4; +∞) возьмем число 5 и подставим в каждое выражение
2*5-5=5 получилось положительное число, значит на этом интервале будет знак “ + ”
4-5=-1 получилось отрицательное число, значит на этом интервале будет знак “ – ”
Теперь решаем уравнения на каждом интервале.
(-∞; 2,5) здесь получился знак “ – ” у выражения “ 2x – 5 ”, значит выражение под модулем поменяет знаки на противоположные и знак “ + ” у выражения “ 4 — x ”, значит выражение под модулем остается без изменения:
-2x + 5 — ( 4 — x ) = -18
-2x + 5 — 4 + x = -18
x=19
Видно, что 19 не лежит на интервале (-∞; 2,5) следовательно, не является корнем уравнения.
(2,5; 4) здесь получился знак “ + ” у обоих выражений, значит выражения под модулем останутся без изменений:
2x – 5 — ( 4 — x ) = -18
2x – 5 — 4 + x = -18
3x=-9
x=-3
Видно, что -3 лежит на интервале (2,5; 4) следовательно,не является корнем уравнения.
(4; +∞) здесь получился знак “ – ” у выражения “ 4 — x ”, значит выражение под модулем поменяет знаки на противоположные и знак “ + ” у выражения “ 2x – 5 ”, значит выражение под модулем остается без изменения:
2x – 5 — ( — 4 + x ) = -18
2x – 5 + 4 — x = -18
x=-17
Видно, что -17 лежит на интервале (4; +∞) следовательно,не является корнем уравнения.
Ответ: корней нет
Пример №3:
Решите уравнение ||x|-3|=15.
Решение:
Так как в правой части стоит простое число то распишем на два уравнения (раскроем внешний модуль):
|x|-3=15
|x|-3=-15
Перенесем в обоих уравнениях -3 вправо, получим:
|x|=15+3
|x|=-15+3
|x|=18
|x|=-12 (модуль не может равняться отрицательному числу, следовательно это уравнение не имеет решений)
Раскрываем модуль |x|=18
x=18
x=-18
Ответ: -18 и 18
Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ