Следующее действие, которое можно выполнять с обычными дробями это вычитание. Вычитание дробей выполняется по нескольким правилам. Рассмотрим эти правила подробнее. Вычитание смешанных дробей с разными знаменателями можно посмотреть нажав на ссылку.
Вычитание дробей с одинаковым знаменателем.
Рассмотрим, пока примеры в которых уменьшаемое больше вычитаемого.
\(\frac{7}{13}-\frac{3}{13} = \frac{7-3}{13} = \frac{4}{13}\)Чтобы выполнить вычитание дробей с одинаковыми знаменателями, нужно посчитать разность числителя уменьшаемого и вычитаемого, а знаменатель оставить без изменения.
\(\frac{a}{b}-\frac{c}{b} = \frac{a-c}{b}\)Вычитание дробей с разными знаменателями.
Чтобы выполнить вычитание дробей с разными знаменателями, нужно привести дроби к общему знаменателю, а потом применить правило вычитания дробей с одинаковыми знаменателями.
Рассмотрим пример:
Выполните вычитание дробей \(\frac{5}{6}\) и \(\frac{1}{2}\).
Общий знаменатель этих двух дробей latex]\frac{5}{6}[/latex] и \(\frac{1}{2}\) равен 6. Умножим вторую дробь \(\frac{1}{2}\) на дополнительный множитель 3.
\(\frac{5}{6}-\frac{1}{2} = \frac{5}{6}-\frac{1 \times \color{red} {3}}{2 \times \color{red} {3}} = \frac{5}{6}-\frac{3}{6} = \frac{2}{6} = \frac{1}{3}\)Дробь \(\frac{2}{6}\) сократили и получили \(\frac{1}{3}\).
Буквенная формула вычитания дробей с разными знаменателями.
\(\bf \frac{a}{b}-\frac{c}{d} = \frac{a \times d-c \times b}{b \times d}\)Вопросы по теме:
Как вычитать дроби с разными знаменателями?
Ответе: нужно найти общий знаменатель и далее по правилу выполнить вычитание дробей с одинаковыми знаменателями.
Как выполнить вычитание дробей с одинаковыми знаменателями?
Ответ: у числителей посчитать разность, а знаменатель оставить тот же.
Как правильно сделать проверку вычитания двух дробей?
Ответ: для проверки правильности вычитания дробей, нужно выполнить сложение вычитаемого и разности, результат их суммы будет равен вычитаемому.
Проверка:
\(\frac{4}{8} + \frac{3}{8} = \frac{4 + 3}{8} = \frac{7}{8}\)Пример №1:
Выполните вычитание дробей: а) \(\frac{1}{2}-\frac{1}{2}\) б) \(\frac{10}{19}-\frac{7}{19}\)
Решение:
а) \(\frac{1}{2}-\frac{1}{2} = \frac{1-1}{2} = \frac{0}{2} = 0\)
При вычитание двух одинаковых дробей получаем нуль.
б) \(\frac{10}{19}-\frac{7}{19} = \frac{10-7}{19} = \frac{3}{19}\)
Пример №2:
Выполните вычитание и проверьте сложением: а) \(\frac{13}{21}-\frac{3}{7}\) б) \(\frac{2}{3}-\frac{1}{5}\)
Решение:
а)Найдем общий знаменатель дробей \(\frac{13}{21}\) и \(\frac{3}{7}\), он будет равен 21. Умножим вторую дробь \(\frac{3}{7}\) на 3.
\(\frac{13}{21}-\frac{3}{7} = \frac{13}{21}-\frac{3 \times \color{red} {3}}{7 \times \color{red} {3}} = \frac{13}{21}-\frac{9}{21} = \frac{13-9}{21} = \frac{4}{21}\)Выполним проверку вычитания:
\(\frac{4}{21} + \frac{3}{7} = \frac{4}{21} + \frac{3 \times \color{red} {3}}{7 \times \color{red} {3}} = \frac{4}{21} + \frac{9}{21} = \frac{4 + 9}{21} = \frac{13}{21}\)б) Найдем общий знаменатель дробей \(\frac{2}{3}\) и \(\frac{1}{5}\), он будет равен 15. Умножим первую дробь \(\frac{2}{3}\) на дополнительный множитель 5, вторую дробь \(\frac{1}{5}\) на 3.
\(\frac{2}{3}-\frac{1}{5} = \frac{2 \times \color{red} {5}}{3 \times \color{red} {5}}-\frac{1 \times \color{red} {3}}{5 \times \color{red} {3}} = \frac{10}{15}-\frac{3}{15} = \frac{10-3}{15} = \frac{7}{15}\)Выполним проверку вычитания:
\(\frac{7}{15} + \frac{1}{5} = \frac{7}{15} + \frac{1 \times \color{red} {3}}{5 \times \color{red} {3}} = \frac{7}{15} + \frac{3}{15} = \frac{7 + 3}{15} = \frac{10}{15} = \frac{2}{3}\)