В окружности с центром O проведены две равные хорды KL и MN

В окружности с центром O проведены две равные хорды KL и MN. На эти хорды опущены перпендикуляры OH и OS. Докажите, что OH и OS равны.

Решение:
В окружности с центром O проведены две равные хорды KL и MN. На эти хорды опущены перпендикуляры OH и OS. Докажите, что OH и OS равны.

Треугольники ∆OKL = ∆OMN (по трем сторонам)
OK=OL=OM=OM радиусы
KL=MN по условию

OH и OS высоты в равных треугольниках ∆OKL и ∆OMN, следовательно, OH=OS.

В окружности с центром O проведены две равные хорды KL и MN. На эти хорды опущены перпендикуляры OH и OS. Докажите, что OH и OS равны.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Видео вебинара, где рассмотрено решение геометрии.
Кликните СЮДА, чтобы посмотреть видео.

Реклама

Добавить комментарий