Не только простые числа можно сравнивать, но и дроби тоже. Ведь дробь — это такое же число как, к примеру, и натуральные числа. Нужно знать только правила, по которым сравнивают дроби.
Сравнение дробей с одинаковыми знаменателями.
Если у двух дробей одинаковые знаменатели, то такие дроби сравнить просто.
Чтобы сравнить дроби с одинаковыми знаменателями, нужно сравнить их числители. Та дробь больше у которой больше числитель.
Рассмотрим пример:
Сравните дроби \(\frac{7}{26}\) и \(\frac{13}{26}\).
Знаменатели у обоих дробей одинаковые равны 26, поэтому сравниваем числители. Число 13 больше 7. Получаем:
\(\frac{7}{26} < \frac{13}{26}\)Сравнение дробей с равными числителями.
Если у дроби одинаковые числители, то больше та дробь, у которой знаменатель меньше.
Понять это правило можно, если привести пример из жизни. У нас есть торт. К нам в гости могут прийти 5 или 11 гостей. Если придут 5 гостей, то мы разрежем торт на 5 равных кусков, а если придут 11 гостей, то разделим на 11 равных кусков. А теперь подумайте в каком случаем на одного гостя придется кусок торта большего размера? Конечно, когда придут 5 гостей, кусок торта будет больше.
Или еще пример. У нас есть 20 конфет. Мы можем поровну раздать конфеты 4 друзьям или поровну поделить конфеты между 10 друзьями. В каком случае у каждого друга будет конфет больше? Конечно, когда мы разделим только на 4 друзей, количество конфет у каждого друга будет больше. Проверим эту задачу математически.
\(\frac{20}{4} > \frac{20}{10}\)Если мы до решаем эти дроби, то получим числа \(\frac{20}{4} = 5\) и \(\frac{20}{10} = 2\). Получаем, что 5 > 2
В этом и заключается правило сравнения дробей с одинаковыми числителями.
Рассмотрим еще пример.
Сравните дроби с одинаковым числителем \(\frac{1}{17}\) и \(\frac{1}{15}\) .
Так как числители одинаковые, больше та дробь, где знаменатель меньше.
\(\frac{1}{17} < \frac{1}{15}\)Сравнение дробей с разными знаменателями и числителями.
Чтобы сравнить дроби с разными знаменателями, необходимо дроби привести к общему знаменателю, а потом сравнить числители.
Пример:
Сравните дроби \(\frac{2}{3}\) и \(\frac{5}{7}\).
Сначала найдем общий знаменатель дробей. Он будет равен числу 21.
\(\begin{align}&\frac{2}{3} = \frac{2 \times 7}{3 \times 7} = \frac{14}{21}\\\\&\frac{5}{7} = \frac{5 \times 3}{7 \times 3} = \frac{15}{21}\\\\ \end{align}\)Потом переходим к сравнению числителей. Правило сравнения дробей с одинаковыми знаменателями.
\(\begin{align}&\frac{14}{21} < \frac{15}{21}\\\\&\frac{2}{3} < \frac{5}{7}\\\\ \end{align}\)Сравнение неправильной и правильной дроби.
Неправильная дробь всегда больше правильной. Потому что неправильная дробь больше 1, а правильная дробь меньше 1.
Пример:
Сравните дроби \(\frac{11}{13}\) и \(\frac{8}{7}\).
Дробь \(\frac{8}{7}\) неправильная и она больше 1.
\(1 < \frac{8}{7}\)Дробь \(\frac{11}{13}\) правильная и она меньше 1. Сравниваем:
\(1 > \frac{11}{13}\)Получаем, \(\frac{11}{13} < \frac{8}{7}\)
Вопросы по теме:
Как сравнить дроби с разными знаменателями?
Ответ: надо привести к общему знаменателю дроби и потом сравнить их числители.
Как сравнивать дроби?
Ответ: сначала нужно определиться к какой категории относятся дроби: у них есть общий знаменатель, у них есть общий числитель, у них нет общего знаменателя и числителя или у вас правильная и неправильная дробь. После классификации дробей применить соответствующее правило сравнения.
Что такое сравнение дробей с одинаковыми числителями?
Ответ: если у дробей одинаковые числители, та дробь больше у которой знаменатель меньше.
Пример №1:
Сравните дроби \(\frac{11}{12}\) и \(\frac{13}{16}\).
Решение:
Так как нет одинаковых числителей или знаменателей, применяем правило сравнения с разными знаменателями. Нужно найти общий знаменатель. Общий знаменатель будет равен 96. Приведем дроби к общему знаменателю. Первую дробь \(\frac{11}{12}\) умножим на дополнительный множитель 8, а вторую дробь \(\frac{13}{16}\) умножим на 6.
Сравниваем дроби числителями, та дробь больше у которой числитель больше.
\( \begin{align}&\frac{88}{96} > \frac{78}{96}\\\\&\frac{11}{12} > \frac{13}{16}\\\\ \end{align}\)Пример №2:
Сравните правильную дробь с единицей?
Решение:
Любая правильная дробь всегда меньше 1.
Задача №1:
Сын с отцом играли в футбол. Сын из 10 подходов в ворота попал 5 раз. А папа из 5 подходов попал в ворота 3 раза. Чей результат лучше?
Решение:
Сын попал из 10 возможных подходов 5 раз. Запишем в виде дроби \(\frac{5}{10} \).
Папа попал из 5 возможных подходов 3 раз. Запишем в виде дроби \(\frac{3}{5} \).
Сравним дроби. У нас разные числители и знаменатели, приведем к одному знаменателю. Общий знаменатель будет равен 10.
\(\begin{align}&\frac{3}{5} = \frac{3 \times 2}{5 \times 2} = \frac{6}{10}\\\\&\frac{5}{10} < \frac{6}{10}\\\\&\frac{5}{10} < \frac{3}{5}\\\\ \end{align}\)Ответ: у папы результат лучше.